Laboratory diagnosis of plasma proteins and plasma enzymes
Functions of plasma proteins

<table>
<thead>
<tr>
<th>Function</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>• transport</td>
<td>thyroxine-binding globuline, (and other hormon-binding globulines)</td>
</tr>
<tr>
<td></td>
<td>apolipoproteins (cholesterol, triglyceride)</td>
</tr>
<tr>
<td></td>
<td>transferrin (iron)</td>
</tr>
<tr>
<td>• humoral immunity</td>
<td>immunoglobulins</td>
</tr>
<tr>
<td>• enzymes</td>
<td>renin, clotting factors, complement proteins</td>
</tr>
<tr>
<td>• protease inhibitors</td>
<td>α₁-antitrypsin</td>
</tr>
<tr>
<td>• maintenance of oncotic pressure</td>
<td>all proteins, particularly albumin</td>
</tr>
<tr>
<td>• buffering</td>
<td>all proteins</td>
</tr>
</tbody>
</table>
Causes of changes in total plasma protein concentration

normal range: 60-80 g/l

Increase:
- Protein synthesis ↑:
 - hypergammaglobulinemia,
 - paraproteinemia
- Volume of distribution ↓:
 - dehydration
- Artefactual:
 - hemoconcentration due to stasis of blood during venepuncture

Decrease:
- Protein synthesis ↓:
 - malnutrition, malabsorption, liver disease
- Volume of distribution ↑:
 - overhydration, increased capillary permeability
- Excretion ↑, Catabolism ↑:
 - protein-losing states, catabolic states
Pathologic changes of plasma proteins

Dysproteinemia: total plasma protein concentration is normal, but the normal ratio of its components is changed.
example: acute inflammation, chronic inflammation.

Defectdysproteinemia: total absence of a certain plasma protein.
example: lack of albumin, lack of alfa-1 antitrypsin, lack of ceruloplasmin

Paraproteinemia: There is a protein in the plasma, which can not be detected under normal conditions.
example: monoclonal gammopathy
Principal plasma proteins

<table>
<thead>
<tr>
<th>Class:</th>
<th>Protein:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>prealbumin</td>
</tr>
<tr>
<td></td>
<td>albumin</td>
</tr>
<tr>
<td>(\alpha_1)-globulin</td>
<td>(\alpha_1)-antitrypsin,</td>
</tr>
<tr>
<td></td>
<td>(\alpha_1)- acid glycoprotein</td>
</tr>
<tr>
<td>(\alpha_2)-globulin</td>
<td>haptoglobins</td>
</tr>
<tr>
<td></td>
<td>(\alpha_2)-macroglobulin</td>
</tr>
<tr>
<td></td>
<td>ceruloplasmin</td>
</tr>
<tr>
<td></td>
<td>transferrin</td>
</tr>
<tr>
<td>(\beta)-globulin</td>
<td>low density lipoprotein</td>
</tr>
<tr>
<td></td>
<td>Complement components</td>
</tr>
<tr>
<td>(\gamma)-globulins</td>
<td>IgG, IgM, IgD, IgE, IgA</td>
</tr>
</tbody>
</table>
Causes of hypoalbuminemia

Decreased synthesis:
- malnutrition
- malabsorption
- liver disease

Increased volume of distribution:
- overhydration
- increased capillary permeability: septicemia, hypoxemia

Increased excretion / degradation:
- nephrotic syndrome
- protein-losing enteropathies
- burns
- hemorrhage
- catabolic states: severe sepsis, fever, trauma, malignant disease
Plasma protein electrophoresis
normal profile
Plasma protein electrophoresis
normal profile

Albumin

α-1 glycoprotein acid
α-1 antitrypsin
haptoglobin
α-2 macroglobulin
 transferrin
C3
γ-globulins
Plasma protein electrophoresis
Acute inflammation
Plasma protein electrophoresis
Acute inflammation

Alb α-1 α-2 β-1 β-2 γ
Plasma protein electrophoresis
Chronic inflammation

Alb α1 α2 β1 β2 γ
Laboratory Diagnosis of Inflammatory Diseases

<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC</td>
<td>qualitative and quantitative</td>
</tr>
<tr>
<td>Erythrocyte Sedimentation Rate (Westergren)</td>
<td>aspecific</td>
</tr>
<tr>
<td>CRP</td>
<td>rapid and sensitive</td>
</tr>
</tbody>
</table>

Changes of plasmaproteins:
- albumin \downarrow
- IgG, IgA, IgM: \uparrow A/G \downarrow
- Protein electrophoresis: α_1, α_2 \uparrow

Acute phase proteins:
- \uparrow
 - α_1-antitrypsin
 - fibrinogen
 - haptoglobin
 - ceruloplasmin
 - CRP
- \downarrow
 - albumin
 - transferrin

Procalcitonin: increases in severe bacterial, mycotic and parasitic diseases, also in sepsis
Plasma protein electrophoresis nephrotic syndrome
Plasma protein electrophoresis
liver cirrhosis

β-γ block
Plasma protein electrophoresis
hyper- and hypogammaglobulinemia
Plasma protein electrophoresis
monoclonal gammopathy
Laboratory findings in multiple myeloma

Biochemical:

Serum:
- presence of paraprotein
- normal immunoglobulins \downarrow
- urea \uparrow
- creatinine \uparrow
- β_2-microglobulin \uparrow
- calcium \uparrow
- urate \uparrow
- normal alkaline phosphatase activity

Urine:
- presence of Bence-Jones protein

Hematological:
- erythrocyte sedimentation rate \uparrow
- anemia (usually normochromic, normocytic)
- rouleaux formation
Clinical enzymology
Classification of plasma enzymes

• Plasma-specific enzymes:

 clotting factors, elements of complement-system, etc.

• Exocrin enzymes:

 amilase, lipase, peptidases etc.

• Intracellular, non-plasma-specific enzymes:

 ASAT, ALAT, GGT, ALP, LDH, CK etc.
ISOENZYMES

LDH: 5 isoenzymes:
LDH$_1$: heart, RBC, renal cortex
LDH$_2$: heart, RBC, renal cortex
LDH$_3$: lungs, lymphocytes
LDH$_4$: liver, skeletal muscle
LDH$_5$: liver, skeletal muscle

ALP:
intestinal tract
placental origin
non-specific isoforms: bones, liver, kidneys, granulocytes

CK: 3 isoenzymes
CK-BB: central nervous system, intestinal tract
< 1%
CK-MM: skeletal muscle
> 94%
CK-MB: heart
< 6%
Most Important Enzymes in Laboratory Diagnosis I.

AST: mainly from heart, skeletal muscle and liver

ALT: mainly from liver

De Ritis formula:
- \(\text{AST/ALT} < 1 \): injury caused by inflammation
- \(\text{AST/ALT} > 1 \): severe necrotic liver disease

GGT: its clinical importance is monitoring hepatobiliary diseases and alkohol-abuse

ALP: hepatobiliary diseases, bone diseases
Most Important Enzymes in Laboratory Diagnosis II.

Amylase: pancreatic disorders
salivary gland disorders

Lipase: specific for pancreatic disorders