Laboratory diagnosis of plasma proteins and plasma enzymes

Functions of plasma proteins

Function:

• transport

- humoral immunity
- enzymes
- protease inhibitors
 maintenance of oncotic pressure
- buffering

Example:

thyroxine-binding globuline, (and other hormon-binding globulines) apolipoproteins (cholesterol, triglyceride) transferrin (*iron*) immunoglobulins renin, clotting factors, complement proteins α 1-antitrypsin all proteins, particularly albumin

all proteins

Causes of changes in total plasma protein concentration normal range: 60-80 g/l

Increase:

- Protein synthesis 1:
 hypergammaglobulinemia,
 paraproteinemia
- •Volume of distribution \downarrow : *dehydration*
- Artefactual:

hemoconcentration due to stasis of blood during venepuncture

Decrease:

• Protein synthesis \downarrow :

malnutrition, malabsorption, liver disease

- Volume of distribution \uparrow : *overhydration, increased capillary permeability*
- Excretion \uparrow , Catabolism \uparrow : protein-losing states, catabolic states

Pathologic changes of plasma proteins

Dysproteinemia: total plasma protein concentration is normal, but the normal ratio of its components is changed *example: acute inflammation, chronic inflammation.*

Defectdysproteinemia: total absence of a certain plasma protein

example: lack of albumin, lack of alfa-1 antitrypsin, lack of ceruloplasmin

Paraproteinemia: There is a protein in the plasma, which can not be detected under normal conditions

example: monoclonal gammopathy

Principal plasma proteins Class: Protein: prealbumin albumin α_1 -antitrypsin, α_1 -globulin α_1 - acid glycoprotein α_2 -globulin haptoglobins α_2 -macroglobulin ceruloplasmin transferrin β-globulin low density lipoprotein Complement components IgG, IgM, IgD, IgE, γ-globulins IgA

Causes of hypoalbuminemia

Decreased synthesis:

- malnutrition
- malabsorption
- liver disease

Increased volume of distribution:

- overhydration
- increased capillary permeability: *septicemia*, *hypoxemia*

Increased excretion /degradation:

- nephrotic syndrome
- protein-losing enteropathies
- burns
- hemorrhage
- catabolic states: *severe sepsis, fever, trauma, malignant disease*

Plasma protein electrophoresis normal profile

Plasma protein electrophoresis Acute inflammation

Plasma protein electrophoresis Acute inflammation

Plasma protein electrophoresis Chronic inflammation

Laboratory Diagnosis of Inflammattory Diseases

WBC: qualitativ and quantitativ

Erythrocyte Sedimentation Rate (Westergren):

aspecific

CRP: rapid and sensitive

Changes of plasmaproteins: albumin↓ IgG, IgA, IgM: $\uparrow A/G \downarrow$ Protein electrophoresis: $\alpha_1, \alpha_2 \uparrow$

Acute phase proteins: ① albumin α_1 -antitrypsin

fibrinogen haptoglobin ceruloplasmin CRP

transferrin

Procalcitonin: increases in severe bacterial, mycotic and parasitic diseases, also in sepsis

Plasma protein electrophoresis nephrotic syndrome

Plasma protein electrophoresis liver cirrhosis

Plasma protein electrophoresis hyper- and hypogammaglobulinemia

Plasma protein electrophoresis monoclonal gammopathy

Laboratory findings in multiple myeloma

Biochemical:

Hematological:

Serum:

- presence of paraprotein
- normal immunoglobulins
- urea ↑
- creatinine \uparrow
- β_2 -microglobulin \uparrow
- calcium ↑
- urate \uparrow
- normal alkaline phosphatase activity

Urine:

- \bullet erythrocyte sedimentation rate \uparrow
- anemia (usually normochromic, normocytic)
- rouleaux formation

Clinical enzymology Classification of plasma enzymes

• Plasma-specific enzymes:

clotting factors, elements of complement-system, etc.

• Exocrin enzymes:

amilase, lipase, peptidases etc.

• Intracellular, non-plasma-specific enzymes: ASAT, ALAT, GGT, ALP, LDH, CK etc.

ISOENZYMES

LDH: 5 isoenzymes:

LDH₁: heart, RBC, renal cortex LDH₂: heart, RBC, renal cortex LDH₃: lungs, lymphocytes LDH₄: liver, skeletal muscle LDH₅: liver, skeletal muscle

ALP:

intestinal tract placental origin non-specific isoforms: bones, liver, kidneys, granulocytes CK: 3 isoenzymes CK-BB: central nervous system, intestinal tract < 1%CK-MM: skeletal muscle > 94%CK-MB: heart < 6%

Most Important Enzymes in Laboratory Diagnosis I.

AST: mainly from heart, skeletal muscle and liver

ALT: mainly from liver

De Ritis formula:

AST/ALT < 1 injury caused by inflammation

AST/ALT > 1 severe necrotic liver disease **GGT:** its clinical importance is monitoring hepatobiliary diseases and alkohol-abuse

ALP: hepatobiliary diseases, bone diseases

Most Important Enzymes in Laboratory Diagnosis II.

Amylase: pancreatic disorders salivary gland disorders

Lipase: specific for pancreatic disorders