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■ Abstract The peroxisome proliferator-activated receptors (PPARs) are a group
of three nuclear receptor isoforms, PPARγ , PPARα, and PPARδ, encoded by different
genes. PPARs are ligand-regulated transcription factors that control gene expression
by binding to specific response elements (PPREs) within promoters. PPARs bind as
heterodimers with a retinoid X receptor and, upon binding agonist, interact with co-
factors such that the rate of transcription initiation is increased. The PPARs play a
critical physiological role as lipid sensors and regulators of lipid metabolism. Fatty
acids and eicosanoids have been identified as natural ligands for the PPARs. More
potent synthetic PPAR ligands, including the fibrates and thiazolidinediones, have
proven effective in the treatment of dyslipidemia and diabetes. Use of such ligands
has allowed researchers to unveil many potential roles for the PPARs in pathological
states including atherosclerosis, inflammation, cancer, infertility, and demyelination.
Here, we present the current state of knowledge regarding the molecular mechanisms
of PPAR action and the involvement of the PPARs in the etiology and treatment of
several chronic diseases.

INTRODUCTION

The peroxisome proliferator-activated receptors (PPARs) form a subfamily of the
nuclear receptor superfamily. Three isoforms, encoded by separate genes, have
been identified thus far: PPARγ , PPARα, and PPARδ. The PPARs are ligand-
dependent transcription factors that regulate target gene expression by binding to
specific peroxisome proliferator response elements (PPREs) in enhancer sites of
regulated genes. Each receptor binds to its PPRE as a heterodimer with a retinoid
X receptor (RXR). Upon binding an agonist, the conformation of a PPAR is altered
and stabilized such that a binding cleft is created and recruitment of transcriptional
coactivators occurs. The result is an increase in gene transcription.

The first cloning of a PPAR (PPARα) occurred in the course of the search for
the molecular target of hepatic peroxisome proliferating agents in rodents. Since
then, numerous fatty acids and their derivatives, including a variety of eicosanoids
and prostaglandins, have been shown to serve as ligands of the PPARs. It has
therefore been suggested that these receptors play a central role in sensing nutrient
levels and in modulating their metabolism. Recently, it has been demonstrated that
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the PPARs are the primary targets of numerous classes of synthetic compounds
used in the successful treatment of diabetes and dyslipidemia. As such, a significant
understanding of the molecular and physiological characteristics of these receptors
has become extremely important to those engaged in the development or utilization
of drugs used to treat metabolic disorders. In addition, owing to the great interest
within the research community, additional putative roles for the PPARs have been
proposed. Various researchers have put forth data supporting regulatory roles for
PPARγ and PPARα in a wide range of events involving the vasculature, including
atherosclerotic plaque formation and stability, vascular tone, and angiogenesis.
PPARγ has also demonstrated significant anti-inflammatory action in models of
colon inflammation. PPARδ, γ , andα have each been implicated in regulating
both normal cellular differentiation and the pathophysiology of carcinogenesis.
Another potentially exciting area of research is the central nervous system (CNS),
where PPARδ has been linked to myelinogenesis and glial cell maturation. Finally,
PPARδ has been shown to affect embryo implantation and therefore fertility. Such
observations, discussed in greater detail below, may eventually lead to important
new therapeutic uses for PPAR ligands.

RECEPTOR STRUCTURE

PPARs, like other nuclear receptors, possess a modular structure composed of
functional domains (1). The DNA binding domain (DBD) and the ligand binding
domain (LBD) are the most highly conserved regions across the receptor isoforms.
The DBD consists of two zinc fingers that specifically bind PPREs in the regulatory
region of PPAR-responsive genes. The LBD, located in the C-terminal half of
the receptor, has been shown by crystallographic studies to be composed of 13
α-helices and a small 4-strandedβ-sheet (Figure 1). The ligand binding “pocket” of
PPARs appears to be quite large in comparison with that of other nuclear receptors
(2, 3). This difference may allow the PPARs to interact with a broad range of
structurally distinct natural and synthetic ligands. Located in the C terminus of the
LBD is the ligand-dependent activation domain, AF-2. This region is intimately
involved in the generation of the receptors’ coactivator binding pocket (2). A
ligand-independent activation function, AF-1, is found in close proximity to the N
terminus of the receptor in the A/B domain (4).

RXR AND HETERODIMERIZATION

Unlike the steroid hormone receptors, which function as homodimers, PPARs
form heterodimers with the retinoid X receptor (RXR) (5). Like PPARs, RXR
exists as three distinct isoforms: RXRα, β, andγ , all of which are activated by
the endogenous agonist 9-cis retinoic acid (6). No specific roles have yet been
elaborated for these different isoforms within the PPAR:RXR complex. However,
synthetic RXR agonists (“rexinoids”) can activate the complex and thereby obtain
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antidiabetic outcomes similar to those seen with PPAR agonists in mouse models
of type 2 diabetes (7).

PEROXISOME PROLIFERATOR RESPONSE ELEMENT

Peroxisome proliferator response elements (PPREs) are direct repeat (DR)-1 ele-
ments consisting of two hexanucleotides with the consensus sequence AGGTCA
separated by a single nucleotide spacer. Such a sequence, or a similar one, has
been found in numerous PPAR-inducible genes including acyl-CoA oxidase and
adipocyte fatty acid-binding protein (8).Cis elements adjacent to the PPRE core
site (especially 5′) appear to play a role in defining the binding selectivity of these
response elements (8). Interestingly, PPAR:RXR binds the PPRE with a reverse
polarity in comparison with vitamin D receptor (VDR):RXR and thyroid receptor
(TR):RXR heterodimers on DR-3 and DR-4 elements, respectively (9).

COACTIVATORS

Several cofactor proteins, coactivators, and corepressors that mediate the ability of
nuclear receptors to initiate (or suppress) the transcription process were recently
identified (10). Coactivators interact with nuclear receptors in an agonist-dependent
manner through a conserved LXXLL motif (where X is any amino acid) (11, 12).
This coactivator domain is oriented by a “charge clamp” formed by residues within
helix 3 and the AF-2 of helix 12 of the LBD. It can then bind to a hydrophobic cleft
in the surface of the receptor formed by helices 3, 4, and 5 and the AF-2 helix (2).
Agonist-induced alterations in the conformation of PPAR have been demonstrated
by comparing the protease digest patterns of the apo- and agonist-bound receptor
(13). Several coactivators, including CBP/p300 and steroid receptor coactivator
(SRC)-1 (14), possess histone acetylase activity that can remodel chromatin struc-
ture. A second group, represented by the members of the DRIP/TRAP complex
such as PPAR binding protein (PBP)/TRAP220 (15), form a bridge between the
nuclear receptor and the transcription initiation machinery. The precise role of a
third group, including PGC-1 (16), RIP140 (17), and ARA70 (18), is not well
understood at the molecular level. At its most simple, a sequence of events can
be envisioned in which coactivators with histone acetylase activity complex with
liganded, PPRE-bound PPAR/RXR receptors, disrupt nucleosomes, and “open-
up” chromatin structure in the vicinity of the regulatory region of a gene (Figure
2). Complexes such as DRIP/TRAP are then recruited and provide a direct link
to the basal transcription machinery. As a result, initiation of transcription is
induced.

The binding of a partial agonist to PPARγ was recently shown to cause the
receptor to interact with CBP or SRC-1 in a less efficacious manner than a full
agonist (19). Such distinctive PPAR:cofactor interactions may be a critical element
in transmitting signals that result in unique gene regulatory activity and could
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therefore prove useful in identifying and characterizing selective PPAR modulators
with novel physiological actions.

LIGAND SCREENING ASSAYS

Several assays have been developed to identify and characterize PPAR ligands
(Figure 2). Transactivation assays involve cotransfection of cells with a PPAR
expression vector and a reporter construct containing a PPRE-driven gene reporter
(20). An agonist will increase the reporter gene signal in such assays. Alternatively,
chimeric receptors consisting of the PPAR LBD and the yeast transcription factor
Gal4 DBD have been utilized with a Gal4-responsive reporter plasmid (21). Radio-
labeled thiazolidinediones (TZDs) and subsequently developed non-TZDs have
been used in competitive PPAR ligand binding assays (13, 20). PPAR scintillation
proximity assays (SPAs), using receptor LBDs attached to scintillant-containing
beads, allowed for high-throughput screening for ligands (22). Most recently, a
novel fluorescent energy transfer assay was implemented to evaluate the ability of
ligands to induce PPAR-cofactor interaction in a rapid, cell-free format (23).

NATURAL LIGANDS

Owing to the critical role PPARs play in lipid metabolism, the search for natural
ligands began with fatty acids and eicosanoids. In fact, such metabolites have been
identified as bona fide natural ligands of the PPARs. Cell-based transactivation
assays and, more recently, direct binding studies have been used to characterize
these endogenous receptor effectors.

Fatty acids and eicosanoid derivatives bind and activate PPARγ at micromo-
lar concentrations. PPARγ clearly prefers polyunsaturated fatty acids, including
the essential fatty acids linoleic acid, linolenic acid, arachidonic acid, and eicos-
apentaenoic acid (3). The micromolar affinity of these metabolites is in line with
their serum levels. However, their intracellular concentration ranges are unknown.
Conversion of linoleic acid to 9-HODE and 13-HODE by 15-lipoxygenase can
provide additional micromolar PPARγ agonists (24). A PGD2-derivative, 15-
deoxy-112,14-prostaglandin J2 (15d-PGJ2), was demonstrated to be a relatively
weak (2–5µM) PPARγ ligand and agonist (25, 26), although the physiological
relevance of this ligand is unclear because cellular concentrations cannot be ac-
curately determined. More recently, an oxidized alkyl phospholipid, hexadecyl
azelaoyl phosphatidylcholine, was shown to bind PPARγ with a Kd of ∼40 nM;
it activated the receptor with a similar EC50 (27). These affinities, which are the
highest thus far reported for a natural PPAR ligand, are similar to those of the
potent synthetic ligand rosiglitazone. This work provides a new and perhaps im-
portant link between oxidized low-density lipoproteins, PPARγ activation, and the
physiology of atherosclerotic plaques.

PPARα can be activated by a wide variety of saturated and unsaturated fatty
acids, including palmitic acid, oleic acid, linoleic acid, and arachidonic acid (28). A
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number of fatty acids have been found to bind the receptor directly with micromolar
affinities (29, 30). As discussed above, it is unclear whether the concentrations
at which binding has been noted are physiologically relevant. The lipoxygenase
metabolite 8(S)-HETE was identified as a submicromolar ligand for PPARα (31)
but is apparently not present at high enough levels in the cell to be classified as a
true natural ligand. In lieu of high-affinity endogenous ligands, it is plausible that
PPARα functions primarily as a sensor of free fatty acid levels in the tissues where
it is expressed.

Like other PPARs, PPARδ interacts with saturated and unsaturated fatty acids;
its ligand selectivity is intermediate between that of PPARγ and PPARα (3). No-
tably, the polyunsaturated fatty acids dihomo-γ -linolenic acid, EPA, and arachi-
donic acid had low micromolar affinities for PPARδ (30). Palmitic acid and
its metabolically stable analogue, 2-bromopalmitic acid, were also identified as
PPARδ agonists (32). A number of eicosanoids, including PGA1 and PGD2,
have been shown to activate PPARδ (31). Carbaprostacyclin, a semisynthetic
prostaglandin, is also a micromolar PPARδ agonist (30). The physiological levels
of its naturally occurring precursor, prostacyclin, however, are unknown because
of its metabolic instability.

SYNTHETIC LIGANDS

Several key observations made in the mid-1990s regarding thiazolidinedione (TZD)
antidiabetic agents have allowed researchers to determine their primary molecular
site of action. Such compounds had been developed over the preceding 15 years on
the basis of their insulin-sensitizing effects in pharmacological studies in animals.
TZDs were found to induce adipocyte differentiation and increase expression of
adipocyte genes, including the adipocyte fatty acid-binding protein aP2 (33, 34).
Independently, Spiegelman and colleagues reported that PPARγ interacted with a
regulatory element within the 5′ flanking region of theaP2gene that controlled its
adipocyte-specific expression (35). These seminal observations were the precur-
sor to additional experiments, which determined that TZDs such as rosiglitazone,
pioglitazone, englitazone, and ciglitazone were, in fact, PPARγ ligands and ago-
nists (13, 20, 36). Rosiglitazone was shown to bind the receptor with a high affinity
(Kd of ∼40 nM), whereas pioglitazone, englitazone, and ciglitazone were less po-
tent ligands. Such characterization of these antidiabetic agents also demonstrated
a definite correlation between the in vivo PPARγ binding and agonist activities of
these compounds and their in vivo insulin-sensitizing actions (13, 36).

TZDs were developed primarily to improve the antidiabetic actions of the fibrate
hypolipidemic agents. Several TZDs, including troglitazone, rosiglitazone, and pi-
oglitazone, have insulin-sensitizing and antidiabetic activity in humans with type
2 diabetes or impaired glucose tolerance (37, 38). AL-294, the first significant lead
compound, evolved into both the TZDs and the parallelα-alkoxyphenylproprio-
nates (39). Select compounds of this latter class have shown potent PPARγ acti-
vity as well as significant PPARα activity. TZDs have also been identified that are
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dual PPARγ /α agonists; KRP-297 is representative of this compound class (40).
Previously, we presented a novel class of phenylacetic acid derivatives, such as
L-796449, which are potent agonists of all three PPARs, and L-805645, which
is a PPARγ selective compound (21, 41). GW2570 is a very potent non-TZD
PPARγ -selective agonist that was recently shown to have antidiabetic efficacy
in humans (38). In addition to these potent PPARγ ligands, a subset of the non-
steroidal anti-inflammatory drugs (NSAIDs), including indomethacin, fenopro-
fen, and ibuprofen, have displayed weak PPARγ and PPARα activities (42). The
PPARγ antagonist GW0072 was recently reported to interact with different amino
acid residues within the LBD of the receptor versus full agonists; in cell culture
experiments, the antagonist blocked adipocyte differentiation (19).

The fibrates, amphipathic carboxylic acids that have been proven useful in the
treatment of hypertriglyceridemia, are PPARα ligands. Clofibrate is a prototype for
this class, which was developed before PPARs were identified, using in vivo assays
in rodents to assess lipid-lowering efficacy (43). This compound was later found to
induce peroxisome proliferation in rodents (44). Since the identification of clofi-
brate, research efforts have expanded considerably, and this class of lipid-lowering
agents has been further characterized. Clofibrate and fenofibrate have been shown
to activate PPARα with a tenfold selectivity over PPARγ (38). Bezafibrate acted as
a pan-agonist that showed similar potency on all three PPAR isoforms. WY-14643,
the 2-arylthioacetic acid analogue of clofibrate, was a potent murine PPARα

agonist as well as a weak PPARγ agonist. In humans, fibrates must all be used
at high doses (300–1200 mg/day) to achieve efficacious lipid-lowering activity.
Recently, the ureidofibrate, GW2331, was found to be a nanomolar PPARα and
PPARγ ligand (45), whereas the closely related GW9578, a ureidobutyric acid,
was reported to be a potent PPARα-selective agonist with robust hypolipidemic
activity in vivo (46).

In order to define the physiological role of PPARδ, efforts have been made to
develop novel compounds that activate this receptor in a selective manner. Among
the α-substituted carboxylic acids described previously (21), the potent PPARδ

ligand L-165041 demonstrated∼30-fold agonist selectivity for this receptor over
PPARγ ; additionally, it was inactive on murine PPARα. This compound was found
to increase high-density lipoprotein levels in rodents (47). Recently, Oliver et al.
reported that GW501516 was a potent, highly selective PPARδ ligand and agonist
(48). In obese, insulin-resistant rhesus monkeys, this compound afforded beneficial
changes in serum lipid parameters.

PPARγ

Cloning and Characterization

Three homologous PPARs, classified as PPARα, β (δ), andγ , were cloned from a
XenopuscDNA library in 1992 (49). PPARγ was subsequently cloned from several
mammalian species including human (50). Two PPARγ isoforms are expressed at
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the protein level in mouse (51) and human (52),γ 1 andγ 2. These differ only in
thatγ 2 has 30 additional amino acids at its N terminus due to differential promoter
usage within the same gene and subsequent alternative RNA processing. PPARγ 2
is expressed primarily in adipose tissue (53). PPARγ 1 is expressed in a broad
range of tissues including heart, skeletal muscle, colon, small and large intestines,
kidney, pancreas, and spleen.

Physiologic Effects and Mechanisms of Insulin Sensitization

PPARγ is necessary and sufficient to differentiate adipocytes. It was first shown
to interact directly with thecis element that regulates adipocyte-specific expres-
sion of the fatty acid-binding protein aP2 (54). Introduction of PPARγ into fi-
broblasts in the presence of weak PPAR ligands induced differentiation of the
cells into adipocytes (55). Recently, several groups of researchers reported that
PPARγ heterozygous null mice had reduced amounts of adipose tissue (56–58).
Barak et al. (56) described a homozygous null mouse that exhibited extreme
lipodystrophy. PPARγ dominant-negative mutants have been generated (59–61).
When expressed in 3T3-L1 cells, such mutants inhibited their differentiation into
adipocytes (59, 60). In adipocytes, PPARγ regulates the expression of numerous
genes (Table 1) involved in lipid metabolism, including aP2 (35), PEPCK (62),
acyl-CoA synthase (63), and LPL (64). PPARγ has also been shown to control
expression of FATP-1 (65) and CD36 (66), both involved in lipid uptake into
adipocytes. These genes have all been shown to possess PPREs within their regu-
latory regions.

PPARγ also regulates genes that control cellular energy homeostasis (Table 1).
It has been shown to increase expression of the mitochondrial uncoupling proteins,
UCP-1, UCP-2, and UCP-3 in vitro and in vivo (67). The physiological outcomes
of these alterations are not yet understood. In contrast to its positive action on the
UCPs, PPARγ downregulates leptin, a secreted, adipocyte-selective protein that
inhibits feeding and augments catabolic lipid metabolism (68, 69). This receptor
activity might explain the increased caloric uptake and storage noted in vivo upon
treatment with PPARγ agonists.

PPARγ has been associated with several genes that affect insulin action. TNFα,
a pro-inflammatory cytokine that is expressed by adipocytes, has been associ-
ated with insulin resistance (70) and diminished insulin signal transduction (71).
PPARγ agonists inhibited expression of TNFα in adipose tissue of obese rodents
(72) and TNFα-induced insulin resistance (73). They also ablated the actions of
TNFα in adipocytes in vitro (74). Activation of PPARγ has been shown to increase
expression of c-CBL-associated protein in cultured adipocytes (75). This protein,
which appears to play a positive role in the insulin signaling pathway, contains a
functional PPRE within the 5′ regulatory region of its gene (76). Expression of
IRS-2, a protein with a proven role in insulin signal transduction in insulin-sensitive
tissue, was also increased in cultured adipocytes and human adipose tissue incu-
bated with PPARγ agonists (77). Recently, we have demonstrated that PPARγ
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TABLE 1 Genes regulated in vivo by PPARγ agonists*

Gene Regulation Potential function(s)

aP2—adipocyte fatty ↑ WAT Intracellular fatty acid binding
acid binding protein

Acyl-CoA synthetase ↑ WAT Lipogenesis and/or catabolism

PEPCK—phosphoenolpyruvate ↑ WAT Glycerol synthesis (for triglycerides)
carboxykinase

LPL-lipoprotein lipase ↑ WAT Hydrolysis of triglyceride-containing
particles

CD36 ↑ WAT Cell surface fatty acid transporter

FATP-1 ↑ WAT ↓ muscle Cell surface fatty acid transporter

Uncoupling ↑ BAT ↑ WAT Uncouple mitochondrial respiration
protein 1—UCP1

UCP3 (+/−UCP2) ↑ WAT Uncouple mitochondrial respiration

Carnitine palmitoyl transferase1 ↑ WAT Translocation of fatty acids into
CPT1 mitochondria

c-CBL-associated protein ↑ WAT Insulin signaling toward glucose
transport

Insulin receptor ↑ WAT Insulin receptor-mediated signaling
substrate-2—IRS-2

Pyruvate dehydrogenase ↑ WAT ↓ muscle Inhibition of pyruvate dehydrogenase
kinase 4—PDK4 (inhibition of glucose oxidation)

Adipocyte complement- ↑ WAT Fat-specific secreted protein; beneficial
related factor 30—Acrp30 metabolic effects on liver/muscle (?)

TNFα ↓ WAT Pro-inflammatory cytokine; potential
mediator of insulin resistance

Leptin ↓ WAT Fat-derived hormone that inhibits
food intake

11-β hydroxysteroid ↓ WAT ( ↓ liver) Controls intracellular conversion to
dehydrogenase 1—11β-HSD-1 active cortisol

*Increases or decreases in mRNA expression are noted in white (WAT) or brown (BAT) adipose tissue and skeletal muscle.
See text for details and references.

agonists inhibit expression of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD-1)
in adipocytes and adipose tissue of type 2 diabetes mouse models (41). This en-
zyme, which is highly expressed in adipocytes and hepatocytes, converts cortisone
to the glucocorticoid agonist cortisol. Because hypercorticosteroidism exacerbates
insulin resistance (78) and 11β-HSD-1 null mice are resistant to diet-induced dia-
betes (79), our results suggest that some of the insulin-sensitizing actions observed
after activation of PPARγ may result from a decrease in adipose 11β-HSD-1 levels.
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Adipocyte-related complement protein (Acrp)30 is a secreted adipocyte-specific
protein that was recently shown to have in vivo effects including decreased glu-
cose, triglycerides, and free fatty acids (80, 81). Treatment of diabetic mice with
PPARγ agonists normalized low mRNA levels and increased plasma levels of
Acrp30 (82). Compared with normal human subjects, patients with type 2 dia-
betes have reduced plasma levels of Acrp30 (83). Increases in Acrp30 plasma
levels were seen in human subjects treated with rosiglitazone but not the PPARα

agonist fenofibrate (82). Induction of Acrp30 by PPARγ agonists might therefore
also play a key role in the mechanism of PPARγ agonist-mediated amelioration
of the metabolic syndrome.

Given that PPARγ is expressed predominantly in adipose tissue, the prevail-
ing hypothesis regarding the net in vivo efficacy of PPARγ agonists involves
direct actions on adipose cells, with secondary effects in key insulin-responsive
tissues such as skeletal muscle and liver. The lack of glucose-lowering efficacy
of rosiglitazone in a mouse model of severe insulin resistance where white adi-
pose tissue was essentially absent supports this notion (84). Although low levels of
PPARγ are expressed in muscle, in vivo treatment of insulin-resistant rats produced
acute (<24 h) normalization of adipose tissue insulin action, whereas insulin-
mediated glucose uptake in muscle was not improved until several days after
the initiation of therapy (85). This is consistent with the fact that PPARγ agonists
can produce an increase in adipose tissue insulin action after direct in vitro incu-
bation (86), whereas no such effect could be demonstrated using isolated in vitro
incubated skeletal muscle (85). In addition, recent analysis of tissue mRNA ex-
pression reveals that selected PPRE-containing genes that are induced in adipose
tissue are actually suppressed in skeletal muscle. An example is pyruvate dehydro-
genase kinase 4 (87). In vivo, PPARγ -mediated suppression of this gene in muscle
would be expected to produce a net increase in glucose oxidation. Therefore, as
depicted in Figure 3, mediators of the beneficial metabolic effects of PPARγ ag-
onists on distant tissues (muscle and liver) are likely to involve a combined effect
to (a) enhance insulin-mediated adipose tissue uptake, storage (and potentially
catabolism) of free fatty acids (88); (b) induce the production of adipose-derived
factors with potential insulin-sensitizing activity (e.g., Acrp30); and (c) suppress
the circulating levels and/or actions of insulin resistance-causing adipose-derived
factors such as TNFα or “resistin” (89).

Inflammation

The inhibitory effects of PPARγ activation on TNFα action discussed above led
several research groups to examine the anti-inflammatory properties of PPARγ

agonists. Monocytes and macrophages play an important part in the inflammatory
process through the release of inflammatory cytokines such as TNFα and IL-6
and the production of nitric oxide (NO) by inducible nitric oxide synthase (iNOS).
Expression of PPARγ was robustly upregulated upon the differentiation of mono-
cytes into macrophages (90). In vitro treatment of rodent macrophages with PPARγ
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agonists downregulated NO production (91). Such ligands were also found to block
PMA-induced synthesis of IL-6 and TNFα in primary human monocytes in spite
of the low level of expression PPARγ in these cells (92). Note that the agonist con-
centrations used in the two aforementioned experiments did not correlate with the
reported affinities of the compounds for the receptor. Furthermore, in contrast to the
results described above, TZD and non-TZD PPARγ agonists, with the exception
of the natural ligand 15d-PGJ2, do not inhibit LPS-induced cytokine production
in cultured macrophages and db/db mice treated in vivo (93). We concluded that
activation of PPARγ was not a major mechanism by which to inhibit activation
of monocytic cells. In general accordance with this conclusion, the Evans group
recently utilized murine PPARγ null macrophages to demonstrate that previously
reported inhibitory actions of PPARγ agonists on macrophage cytokine production
occur via a receptor-independent mechanism (94).

In contrast to the results above, Chinetti et al. demonstrated that rosiglitazone
induced apoptosis of cultured macrophages by altering NFκB signaling at concen-
trations that paralleled its known affinity for PPARγ (90). This ligand has also been
shown to block inflammatory cytokine synthesis in colonic cell lines by inhibit-
ing activation of the NFκB pathway (95). This latter observation offers a possible
mechanistic explanation for the observed anti-inflammatory actions of TZDs in
rodent models of colitis (95).

Cancer

The interest in studying the effects of PPARγ activation on various forms of can-
cer is derived from previous results suggesting that PPARγ ligands inhibited cell
proliferation when inducing adipocyte differentiation. For example, activation of
PPARγ caused logarithmically growing fibroblasts and virally transformed HIB1B
adipocytes to withdraw from the cell cycle (96). Activation of PPARγ by piogli-
tazone blocked the cell cycle and caused differentiation of primary liposarcoma
cells in culture (97). In human subjects, the PPARγ agonist troglitazone caused
differentiation of advanced liposarcomas (98). Such results support a therapeutic
role for PPARγ ligands in the treatment of this often recalcitrant form of cancer.
PPARγ has been shown to be expressed at significant levels in human mammary
adenocarcinomas, and PPARγ agonists have been reported to reduce growth and
induce differentiation of malignant breast epithelial cells (99). Such ligands have
also inhibited tumor growth in mouse models of mammary carcinoma (100).

PPARγ is expressed at high levels in primary colon tumors and colon cancer
cell lines (101). Incubating such transformed cells with PPARγ agonists caused
them to withdraw from the cell cycle, decrease their growth rate, and demonstrate
changes in morphology indicative of increased differentiation (102). Inhibitors of
cyclooxygenases (COXs) have been shown to be effective in reducing the risk
of colon cancer. Since the COXs metabolize fatty acids to prostaglandins and
eicosanoids, it was suggested that they might promote carcinogenesis by generating
PPARγ ligands. In support of this hypothesis, APCmin/+ mice (a model of inherited
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polyposis) treated with high doses of two TZDs displayed a small but statistically
significant increase in the number of colon polyps (103, 104). However, others
have found that treating mice with troglitazone inhibited growth of transplanted
human colon tumors (102). In light of the above contradictory results, it is not
presently possible to conclude what role PPARγ plays in the pathophysiology of
colon cancer.

Hypertension

Hypertension is a complex disorder of the cardiovascular system that is asso-
ciated with insulin resistance. Type 2 diabetes patients demonstrate a 1.5- to
2-fold increase in hypertension in comparison with the general population (105).
Troglitazone therapy has been shown to decrease blood pressure in diabetic patients
(106) as well as in obese, insulin-resistant persons (107). Since such reductions
in blood pressure correlate with decreases in insulin levels (106), they may be
mediated, at least in part, by an improvement in insulin sensitivity.

Genetic Variation

Several groups have reported nucleotide sequence polymorphisms within the cod-
ing exons of the PPARγ gene (108–111); however, there are no known spontaneous
mutations affecting PPARγ in nonhuman species. A silent polymorphism (C→ T)
in the sixth exon common to PPARγ 1 and PPARγ 2 (109, 111) was suggested to
distinguish the relationship between body mass index (BMI) and plasma leptin
levels in subjects with the CC genotype versus those with the T allele (CT or TT).
Thus, genetic variation in or near the PPARγ locus could modulate leptin levels
in response to variable degrees of body adiposity.

More important was the discovery of a polymorphism encoding the substitution
of Ala for Pro at amino acid 12, as initially reported by Yen et al. (109). The Ala12

allele frequency varies from 0.03 to 0.12 in several populations and was initially
shown to be associated with increasing degrees of obesity (112). In several addi-
tional studies, the Ala12 allele was associated with lower BMI, improved insulin
sensitivity, and reduced incidence of type 2 diabetes (108, 113). In one large study,
the more common Pro12 allele was associated with a 1.25-fold increase in risk
of type 2 diabetes (113). In contrast, other groups failed to detect an association
of Ala12 with altered metabolic parameters (114, 115). Importantly, the recombi-
nant receptor bearing this single amino acid change was apparently defective with
respect to DNA binding and its ability to mediate ligand-stimulated transactiva-
tion in transfected cells (108). Because this variant is relatively prevalent, it may
contribute to altered physiology of fat metabolism in humans.

A second PPARγ polymorphism, encoding a Pro115→ Gln substitution, was
present in 4 of 121 obese German subjects (mean BMI 33.9) but was absent in
each of 237 normal-weight controls (mean BMI 25) (110). Interestingly, this poly-
morphism is adjacent to Ser114, which may be an important site of negative reg-
ulation via growth factor-mediated phosphorylation (116). Thus, like an artificial
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Ser114→ Ala mutant (116), the naturally occurring Gln115 mutant resulted in a
greater degree of adipogenesis than wild-type PPARγ when studied in overex-
pressing cells (110).

In contrast to the more subtle potential effects of the Ala12 or Gln115 poly-
morphisms, Barroso et al. recently reported on two families with a phenotype of
severely insulin-resistant type 2 diabetes in association with heterozygous PPARγ

mutations—either Pro467→ Leu or Val290→ Met (117). Interestingly, hyperten-
sion was reported as an additional associated phenotype. Importantly, in both
families, these mutant receptors were shown to have severely impaired function
with potential dominant-negative effects when studied in transfected cells.

PPARα

Cloning and Characterization

Murine PPARα was the first member of this nuclear receptor subclass to be cloned
(118). It has subsequently been cloned from frog (49), rat (119), rabbit (120),
and human (121). Human PPARα has been mapped to chromosome 22 adjacent
to the region 22q12-q13.1 (121). In rodents and humans, PPARα is expressed
in numerous metabolically active tissues including liver, kidney, heart, skeletal
muscle, and brown fat (122, 123). It is also present in monocytic (90), vascular
endothelial (124), and vascular smooth muscle cells (125).

PPARα serves as the receptor for a structurally diverse class of compounds,
including hypolipidemic fibrates, that induce hepatic peroxisome proliferation,
hepatomegaly, and hepatocarcinogenesis in rodents (118). Remarkably, these toxic
effects are lost in humans, although the same compounds activate PPARα across
species (126). Several explanations have been proffered for the differential effects
of PPARα agonists. Hepatic expression of wild PPARα is expressed at levels ten-
fold higher in rodent liver than in human liver (127). The PPREs of genes in-
volved in peroxisome proliferation, including acetyl CoA oxidase (ACO), have
been shown to differ between rodents and humans. The human enhancer sequence
of ACO could not be activated by PPARα in transactivation experiments (128).

PPARα has been shown to play a critical role in the regulation of cellular uptake,
activation, andβ-oxidation of fatty acids. PPARα induces expression of the fatty
acid transport protein (FATP) (65) and FAT (129), two proteins that transport fatty
acids across the cell membrane. Activation of PPARα also directly upregulates
transcription of long chain fatty acid acetyl-CoA synthase (63) as well as ACO
(49, 130), enoyl-CoA hydratase/dehydrogenase multifunctional enzyme (131), and
keto-acyl-CoA thiolase (132) enzymes in the peroxisomalβ-oxidation pathway.
Carnitine palmitoyltransferase I (CPT I) catalyzes the rate-limiting step in the
translocation of activated fatty acids into the inner membrane of the mitochondria
where the most productive step in their catabolism occurs. This enzyme is strongly
induced by PPARα ligands (133), and a functional PPRE has been identified in the
5′ flanking region of its gene (134–136). Other PPARα-responsive genes in this
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mitochondrial metabolic pathway have also been reported, including various acyl-
CoA dehydrogenases (137, 138) and hydroxymethylglutaryl-CoA synthase (139).
The CYP4A subclass of cytochrome P450 enzymes catalyzes theω-hydroxylation
of fatty acids, a pathway that is particularly active in the fasted and diabetic states.
Fibrates and other peroxisome proliferators activate expression of the CYP4As,
and functional PPREs have been found in the regulatory regions of CYP4A genes
(140, 141). In sum, PPARα is an important lipid sensor and regulator of cellular
energy-harvesting metabolism. Potent genetic proof for this conclusion is offered
by Lee et al., who reported that PPARα null mice had depressed levels of nu-
merous fatty acid metabolizing enzymes and were unresponsive to the actions of
peroxisome proliferating agents (142).

Dyslipidemia and Atherosclerosis

Atherosclerosis is a very prevalent disease in westernized societies. In addition
to a strong association with elevated LDL cholesterol, dyslipidemia character-
ized by elevated triglyceride-rich particles and low levels of HDL cholesterol is
commonly associated with other aspects of a metabolic syndrome that includes
obesity, insulin resistance, type 2 diabetes, and an increased risk of coronary
artery disease (143). Thus, in 8500 men with known coronary artery disease, 38%
were found to have low HDL (<35 mg/dL) and 33% had elevated triglycerides
(>200 mg/dL) (144). Treatment of these patients with fibrates such as gemfibrozil
and fenofibrate, which are weak PPARα agonists, resulted in substantial triglyc-
eride lowering and modest HDL-raising efficacy (145). More importantly, a recent
large prospective trial proved that treatment with gemfibrozil produced a 22% re-
duction in cardiovascular events or death (145, 146). Thus PPARα agonists can
effectively improve cardiovascular risk factors and have a net benefit to improve
cardiovascular outcomes.

Mechanisms by which PPARα activation causes triglyceride lowering are likely
to include the effects of agonists to suppress hepatic apo-CIII gene expression
while also stimulating LPL gene expression (64, 147). Moreover, the triglyceride-
lowering activity of fibrates and related compounds is ablated in PPARα null mice
(148). The effect of fibrates to increase HDL levels has been suggestively associated
with an increase in apo-AI gene expression, although this finding is not universally
observed (149); thus, additional mechanisms may be involved (discussed below).

The presence of PPARα and/or PPARγ expression in vascular cell types in-
cluding macrophages, endothelial cells, and vascular smooth muscle cells suggests
that direct vascular effects might contribute to potential antiatherosclerosis effi-
cacy (143). As discussed above, PPARγ agonists have been reported to produce
variable antiinflammatory effects in monocyte-macrophages. In addition, several
lines of evidence have shown that PPARα agonists have potentially relevant lo-
cal or systemic antiinflammatory effects, particularly in vascular smooth muscle
cells (see below). A particular effect of either PPARα (150) or PPARγ (151–
153) activation to inhibit cytokine-induced vascular cell adhesion and to suppress
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monocyte-macrophage migration has also been recently reported as a possible
mechanism of antiatherosclerosis efficacy.

Two recent studies have suggested that either PPARα (154) or PPARγ (154, 155)
activation in macrophages can induce the expression of a cholesterol efflux “pump”
known as ABC-A1. Since ABC-A1 is a target gene for the liver-X-receptor (LXR),
these investigators also showed a modest induction of LXR expression, which
may represent the indirect mechanism by which PPAR activation can upregulate
ABC-A1.

Although the net effect of fibrates to reduce cardiovascular risk in humans is now
well accepted, the potential for an antiatherosclerosis effect of PPARγ agonists
(e.g., TZDs) remains unexplored in humans. Several recent studies have shown
that PPARγ -selective compounds have the capacity to reduce arterial lesion size in
animal models of atherosclerosis. In LDL-receptor null mice, rosiglitazone, trogli-
tazone, and a potent non-TZD PPARγ agonist were shown to inhibit lesion forma-
tion (156, 157). In addition, troglitazone was shown to suppress lesion formation
in atherosclerosis-prone apo-E null mice (158) and in Wantanabe hyperlipidemic
rabbits (159). Furthermore, troglitazone treatment of apo-E–deficient mice for
7 days was sufficient to attenuate monocyte-macrophage homing to arterial le-
sions in vivo (153). Thus, via multifactorial mechanisms including improvements
in circulating lipids, systemic and local anti-inflammatory effects, and, potentially,
inhibition of vascular cell proliferation, both PPARα and PPARγ agonists show
strong promise for use in the treatment or prevention of atherosclerosis.

Inflammation

PPARα was first proposed to be a modulator of inflammation when leukotriene
B4 (LTB4), a potent chemotactic agent, was found to be a ligand and agonist
for the receptor (160). It was suggested that activation of PPARα inhibited the
inflammatory action of such eicosanoids by augmenting expression of hepatic
enzymes involved in their metabolism. This argument was fortified when it was
observed that PPARα null mice have more extended inflammatory responses than
their wild-type littermates in response to LTB4 or its precursor arachidonic acid.

Other, nonhepatic, anti-inflammatory mechanisms have been described for
PPARα ligands that may be important in maintaining vascular health. Treatment of
cytokine-activated human macrophages with PPARα agonists induced apoptosis
of the cells by interfering with the antiapoptotic NFκB signaling pathway (90).
Staels et al. reported that PPARα but not PPARγ agonists inhibited activation
of aortic smooth muscle cells in response to inflammatory stimuli by repressing
NFκB signaling (125). In hyperlipidemic patients, fenofibrate treatment decreased
the plasma concentrations of the inflammatory cytokine interleukin-6 (125). Addi-
tional work showed that IκBα levels were induced in vascular smooth muscle cells
by fibrates, thereby offering another anti-inflammatory mechanism for PPARα

agonists (161). In contrast with these results, increased plasma TNFα levels were
observed in fibrate-treated endotoxemic mice (162). This undesirable effect may
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be associated with PPARα-induced hepatic peroxisome proliferation. Clearly, ad-
ditional research is needed to further investigate these provocative results and to
deepen our knowledge of PPARα’s role in the physiopathology of the inflammatory
process, especially as it affects the vascular system.

Genetic Variation

The existence of a few sequence variants in the human PPARα gene was first
reported by Tugwood; these included Thr71→ Met, Lys123→ Met, Ala268→ Val,
Gly296→ Ala, and Val444→ Ala (163). One particular allele with Met at posi-
tions 71 and 123 as well as the Ala444 substitution was shown to undergo normal
RXR dimerization and DNA binding but was inactive in a cell-based transactiva-
tion assay (163). Subsequently, another potentially important hPPARα polymor-
phism was described that lacks 203 basepairs encoding residues 508–712 at the
C-terminal end of the DNA binding domain (further described above). More re-
cently, a Leu162→ Val variant was shown to be associated with higher total and
HDL cholesterol in a relative small cohort of human subjects (164). This polymor-
phism apparently has greater transcriptional activity when studied in transfected
cells. In an additional study, the Leu162→ Val allele was associated with higher
LDL and apoB levels, suggesting that it conferred increased atherosclerosis risk.
Therefore, the existence of PPARα genetic variants with clear-cut functional effects
and a bona fide causal relationship to metabolic alterations has yet to be discovered.

PPARδ

Cloning and Characterization

Human (165) andXenopus(49) PPARδ cDNAs were cloned in the early 1990s. The
receptor was subsequently cloned from mouse (166) and rat (167). Human PPARδ

has been localized to chromosome 6p21.1–p21.2 (168) whereas the murine gene
has been mapped to chromosome 17 (169). PPARδ is expressed in a wide range of
tissues and cells, with relatively higher levels of expression noted in brain, adipose,
and skin (122, 170). Thus far, no PPARδ-specific gene targets have been identified.

Dyslipidemia and Insulin Resistance

Using relatively selective PPARδ agonists such as L-165041, we determined that
such compounds produced minimal, if any, significant glucose- or triglyceride-
lowering activity in murine models of type 2 diabetes compared with efficacious
PPARγ or PPARα agonists (21). Subsequently, a modest increase in HDL-choles-
terol levels was detected with L-165041 in db/db mice (47). More recently, Oliver
et al. reported that the potent and selective PPARδ agonist GW-501516 could
induce a substantial increase in HDL-cholesterol levels as well as a reduction
in triglyceride levels in obese Rhesus monkeys (48). In addition, elevated lev-
els of plasma insulin (a consequence of insulin resistance) were suppressed by
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GW-501516 treatment. Although these beneficial metabolic effects in a primate
model have yet to be reproduced by others or with other compounds, the results
point to an important therapeutic potential for PPARδ -selective compounds.

Fertility

One area in which the role of PPARδ has been examined is fertility. COX-2 null fe-
male mice are reported to display decreased fecundity, in part due to decreased blas-
tocyte implantation and decidualization (171). COX-2 catalyzes the rate-limiting
step in generating prostaglandins, including prostacyclin, the eicosanoid that ap-
pears to serve as the natural agonist for PPARδ. PPARδ was found to be expressed
in implantation sites within the uterus, and was strongly upregulated during the de-
cidualization process in a manner similar to COX-2 (172). When COX-2 null mice
were treated with carboprostacyclin or our PPARδ-selective agonist L-165041,
implantation was restored (172). Such results support the conclusion that PPARδ

may play a role in maintaining reproductive capacity in females.

Cancer

Throughout the past decade, researchers have sought to establish the roles of
the three PPAR isoforms in the pathophysiology of cancer. In 1999, He et al.
identified PPARδ as a target of the tumor suppressor APC in colorectal cancer
cells (173). In these cells, which possess inactivation mutations of APC, PPARδ

was highly expressed, and transcription factors in the APC signaling pathway,
β-catenin/Tcf-4, were found to interact directly with and activate the promoter of
PPARδ. Recently, a PPARδ−/− colorectal cancer cell line was found to exhibit a
greatly decreased ability to form tumors in nude mice in comparison with PPAR+/−

cancer cells (174). Although far from conclusive, these results do suggest that
PPARδ antagonists might prove beneficial in the treatment of colon cancer.

Central Nervous System

Localization studies have demonstrated that PPARδ is abundantly expressed
throughout the rat CNS, with particularly high levels found in the dentate gyrus,
hippocampus, telencephalic cortex, cerebellum, and thalamic nuclei (122, 175,
176). Further investigation has shown that PPARδ expression is at its highest level
in the embryonic brain (stage E18.5), suggesting that it may play a critical role in
regulating the differentiation of cells within the CNS (177).

We have examined the expression of PPARδ in murine brain by in situ hybridiza-
tion and immunohistochemistry and found it to be expressed widely throughout
murine brain but at particularly high levels in the entorhinal cortex, hypothala-
mus, and hippocampus as well as the corpus callosum and the neostriatum (J.W.
Woods, M. Tanen, D.J. Figueroa, C. Biswas, E. Zycband, D.E. Moller, C.P. Austin
& J. Berger, unpublished data). Expression of PPARδ in the caudate putamen
and corpus callosum suggests its possible involvement in volitional movement
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as well as cortical processing of signals from the thalamus (178). PPARδ ex-
pression in limbic regions (hypothalamus, hippocampus, and entorhinal cortex)
suggests that PPARδ might also play a role in more complex emotional, circadian,
and autonomic functions (179). PPARδ was highly expressed within oligoden-
drocytes of the corpus callosum and neurons but not in astrocytes of the caudate
putamen.

High levels of PPARδ expression have recently been reported in cultured murine
oligodendrocytes, and PPARδ agonists, bromopalmitate and our L-165041, were
found to augment differentiation of and myelinogenesis by these cells (180, 181).
It is therefore noteworthy that PPARδ null mice were found to have diminished
myelination levels of the corpus callosum (182), an area normally rich in PPARδ-
expressing oligodendrocytes (see above). PPARδ has also been found to be the
major isotype expressed in cultured rat neurons and to be coexpressed with acyl-
CoA synthase 2, an enzyme thought to play an important role in fatty acid utilization
within the brain (183). Using L-165041, it was discovered that theACS2gene
is transcriptionally regulated by PPARδ. Together, these data suggest a role for
PPARδ in myelination, neuronal signaling, and lipid metabolism in the CNS.

CONCLUSIONS AND FUTURE DIRECTIONS

Isoforms of the PPAR family of nuclear receptors are clearly involved in the
systemic regulation of lipid metabolism and serve as “sensors” for fatty acids,
prostanoid metabolites, eicosanoids, and related molecules. These receptors func-
tion to regulate a broad array of genes in a coordinate fashion. Important biochem-
ical pathways that regulate peroxisomal function, lipid oxidation, metabolism of
xenobiotics, lipid synthesis, adipocyte differentiation, insulin action, cell prolifera-
tion, and inflammation can be modulated by activation (or inhibition) of individual
PPAR isoforms. Strong therapeutic effects of PPARα and PPARγ agonists to fa-
vorably influence systemic lipid levels, glucose homeostasis, and atherosclerosis
risk (in the case of PPARα activation in humans) have recently been discovered. Al-
though specific molecular mechanisms by which PPARα activation can effectively
ameliorate dyslipidemia are now well characterized, the multifactorial mechanism
by which PPARγ agonists reduce insulin resistance remains to be further eluci-
dated. Recent observations made using PPARδ ligands suggest that this less well
characterized isoform may also be an important therapeutic target for selected
disorders, including cancer, infertility, and dyslipidemia.

Further assessment of the physiologic effects of individual PPARs, such as can
be achieved with the use of tissue-selective knockout mice, should provide better
insights into the precise roles of these receptors in individual cell types. In addition,
the use of gene microarray and proteomic techniques to carefully monitor the full
spectrum of gene expression and protein effects of more selective compounds has
yet to be fully exploited. A more complete understanding of the potential utility
(and pitfalls) of modulating individual PPAR actions should follow.
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Figure 1 X-ray crystal structure of PPARγ ligand binding domain. Several key
α-helices are shown along with the relative location of key functional regions.
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Figure 2 Mechanism of transcriptional activation by PPAR isoforms. Selected
molecular components are shown relative to assay formats that can be used to
characterize compound activities.
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Figure 3 Working hypothesis for PPARγ -mediated increases in insulin sensitivity.


